2020

MATHEMATICS - HONOURS

Seventh Paper
(Module - XIII)
Full Marks: 50
The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.
$\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ respectively denote the set of natural numbers, integers, rational, real numbers and complex numbers.

Group - A

[Analysis - IV]
(Marks : 20)
Answer any one question.

1. (a) Let f and φ be two functions of x such that for some positive real number $\lambda, 0<f(x) \leqslant \lambda \varphi(x)$ for all $x \geqslant a$. If each of f and φ be integrable on $[a, X]$ for every $X>a$, prove that $\int_{a}^{\infty} f(x) d x$ converges if $\int_{a}^{\infty} \varphi(x) d x$ converges and $\int_{a}^{\infty} \varphi(x) d x$ diverges if $\int_{a}^{\infty} f(x) d x$ diverges.
(b) Test the convergence of the integral $\int_{0}^{1} \frac{\sqrt{x}}{e^{\sin x}-1} d x$.
(c) Establish the convergence of $\int_{0}^{\infty} \frac{x \log x}{\left(1+x^{2}\right)^{2}} d x$ and find its value.
2. (a) Show that $\int_{0}^{1} \frac{1}{(x+1)(x+2) \sqrt{x(1-x)}} d x$ is convergent.
(b) State Abel's Test in connection with the convergence of improper integral of product of two functions over a bounded and closed interval. Using it, show that $\int_{0}^{1} \frac{\log _{e}(1+x) \sin \frac{1}{x}}{x} d x$ is convergent.
(c) Express $\int_{0}^{1} x^{m}\left(1-x^{p}\right)^{n} d x$ in terms of Beta function mentioning the conditions on m, n, p. Hence evaluate $\int_{0}^{1} x^{5}\left(1-x^{3}\right)^{10} d x$ $6+(2+4)+8$
3. (a) Show that for $f(x)=\cos k x$ on $[-\pi, \pi]$, where k is not an integer,

$$
\cos k x=\frac{\sin k x}{\pi}\left[\frac{1}{k}-\frac{2 k \cos x}{k^{2}-1^{2}}+\frac{2 k \cos 2 x}{k^{2}-2^{2}}+\ldots\right] .
$$

Deduce that $\pi \cos k \pi=\frac{1}{k}+2 k \sum_{n \in \mathbb{N}} \frac{1}{k^{2}-n^{2}}$.
(b) Evaluate $\int_{0}^{1} d y \int_{y}^{1} e^{x^{2}} d x$.
4. (a) Show that the integral $\iint_{E} e^{\frac{y-x}{y+x}} d x d y$, where E is the triangle with vertices at $(0,0),(0,1)$ and $(1,0)$ is $\frac{1}{4}\left(e-\frac{1}{e}\right)$.

> Or

Evaluate $\iint_{E} x^{1 / 2} y^{1 / 3}(1-x-y)^{2 / 3} d x d y$, where E is the region bounded by the lines $x=0, y=0$ and $x+y=1$.
(b) Show that the volume included between the elliptical paraboloid $2 z=\frac{x^{2}}{p}+\frac{y^{2}}{q}$, the cylinder $x^{2}+y^{2}=a^{2}$ and the $x y$ plane is $\frac{\pi a^{4}(p+q)}{8 p q}$.

Or,

Let a function f be defined on a rectangle $R=[0,1 ; 0,1]$ as follows :

$$
f(x, y)= \begin{cases}\frac{1}{2} & \text { when } y \text { is rational } \\ x & \text { when } y \text { is irrational }\end{cases}
$$

Show that (i) $\int_{0}^{1} d y \int_{0}^{1} f(x, y) d x=\frac{1}{2}$ and (ii) $\int_{0}^{1} d x \int_{0}^{1} f(x, y) d y$ does not exist.

Group - B
[Metric space]

(Marks : 15)

5. Answer any one question:
(a) (i) For any two distinct points a, b in a metric space (X, d), prove that there exist disjoint open spheres with centres at a and b respectively.
(ii) In the metric space of real numbers (\mathbb{R}, d) with the usual metric, let $\rho(A, B)$ be the distance between two subsets A, B of \mathbb{R}. Show that $\rho(A, B)=0$ where $A=\mathbb{N}$ and $B=\left\{n+\frac{1}{2 n}: n \in \mathbb{N}\right\}$.
(b) (i) Let (X, d) be a metric space and $A, B \subset X$. Then show that $\overline{A \cup B}=\bar{A} \cup \bar{B}$ ($\overline{\mathrm{U}}$ denote the closure of U$)$.
(ii) If $\delta(A)$ and \bar{A} denote diameter and closure of a set A in a metric space (X, d), then prove that $\delta(A)=\delta(\bar{A})$.
(c) (i) Consider the metric space $\left(\mathbb{R}^{2}, d\right)$ where $d(x, y)=\left|x_{1}-y_{1}\right|+\left|x_{2}-y_{2}\right|$ for all $x=\left(x_{1}, x_{2}\right)$, $y=\left(y_{1}, y_{2}\right) \in \mathbb{R}^{2}$ for $a=(0,0) \in \mathbb{R}^{2}$ and any positive number r, describe the open ball $S(a, r)$ geometrically.
(ii) Let $C[a, b]$ be the set of all real valued continuous functions defined on $[a, b]$. Define $d(f, g)=\operatorname{Sup}_{f, g \in C[a, b]}|f(t)-g(t)|$. Show that $A=\left\{f \in C[a, b]: \inf _{x \in[a, b]} f(x)>0\right\}$ is an open set.
(d) Prove that $C[a, b]$, the set of all real valued continuous functions defined on $[a, b]$, is complete under the metric d where $d(f, g)=\sup \{|f(x)-g(x)|: a \leq x \leq b\}$ for all $f, g \in C[a, b]$.
(e) (i) If a sequence $\left\{x_{n}\right\}_{n}$ is convergent in the metric space (X, d), then prove that for $a \in X$, the $\operatorname{set}\left\{d\left(x_{n}, a\right): n \in \mathbb{N}\right\}$ is bounded.
(ii) In the metric space (\mathbb{R}, d) with usual metric, consider the sequence $\left\{F_{n}\right\}_{n}$ of sets where $F_{n}=\left[-5-\frac{1}{n},-5\right] \cup\left[5,5+\frac{1}{n}\right]$ for all $n \in \mathbb{N}$. Show that $\bigcap_{n=1}^{\infty} F_{n}$ is not singleton.

Group - C

[Complex Analysis]

(Marks : 15)
6. Answer any two questions:
(a) (i) Show that the image of a line T under the stereographic projection is a circle minus north pole in the Riemann sphere $x^{2}+y^{2}+\left(z-\frac{1}{2}\right)^{2}=\frac{1}{4}$.
(ii) Show that the function $\frac{\bar{z}}{Z}$ is not continuous at the origin $\mathrm{Z}=0$ for any choice of $f(0) .5+2^{1 / 2}$
(b) (i) If $f(z)$ and $\overline{f(z)}$ are both analytic in a region, then show that $f(z)$ is constant in that region.
(ii) Prove or disprove : If $f: S \rightarrow \mathbb{C}$ is differentiable on S, where $S \subseteq \mathbb{C}$ and $f^{\prime}(z)=0$ for all $z \in S^{\prime}$, then f is a constant function on S.
(c) Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be defined by

$$
f(z)= \begin{cases}\frac{(\bar{z})^{2}}{z}, & \text { for } z \neq 0 \\ 0, & \text { for } z=0\end{cases}
$$

Show that Cauchy-Riemann equations are satisfied at $z=0$, but the derivative of f fails to exist there.
(d) If $f(z)$ is an analytic function of $z=x+i y$, prove that $\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)|\operatorname{Re} f(z)|^{2}=2\left|f^{\prime}(z)\right|^{2}$.
(e) Use Milne-Thompson method to find an analytic function whose imaginary part is given by :

$$
v(x, y)=3 x^{2} y+y^{3} .
$$

